Spatial nonstationarity, the location variance of features' statistical distributions, is ubiquitous in many natural settings. For example, in geological reservoirs rock matrix porosity varies vertically due to geomechanical compaction trends, in mineral deposits grades vary due to sedimentation and concentration processes, in hydrology rainfall varies due to the atmosphere and topography interactions, and in metallurgy crystalline structures vary due to differential cooling. Conventional geostatistical modeling workflows rely on the assumption of stationarity to be able to model spatial features for the geostatistical inference. Nevertheless, this is often not a realistic assumption when dealing with nonstationary spatial data and this has motivated a variety of nonstationary spatial modeling workflows such as trend and residual decomposition, cosimulation with secondary features, and spatial segmentation and independent modeling over stationary subdomains. The advent of deep learning technologies has enabled new workflows for modeling spatial relationships. However, there is a paucity of demonstrated best practice and general guidance on mitigation of spatial nonstationarity with deep learning in the geospatial context. We demonstrate the impact of two common types of geostatistical spatial nonstationarity on deep learning model prediction performance and propose the mitigation of such impacts using self-attention (vision transformer) models. We demonstrate the utility of vision transformers for the mitigation of nonstationarity with relative errors as low as 10%, exceeding the performance of alternative deep learning methods such as convolutional neural networks. We establish best practice by demonstrating the ability of self-attention networks for modeling large-scale spatial relationships in the presence of commonly observed geospatial nonstationarity.
translated by 谷歌翻译
基于历史数据的生产预测为开发碳氢化合物资源提供了基本价值。经典的历史匹配工作流程通常在计算上是强度和几何相关的。分析数据驱动的模型,例如衰落曲线分析(DCA)和电容抗性模型(CRM)提供了无网溶液,具有相对简单的模型,能够整合一定程度的物理约束。但是,分析解决方案可能会忽略地下几何形状,仅适用于特定的流动状态,否则可能会违反物理条件,从而导致模型预测准确性。基于机器学习的时间序列的预测模型为生产预测提供了非参数,无假设的解决方案,但由于训练数据的稀疏性,很容易模拟过度拟合。因此,在简短的预测时间间隔中可能是准确的。我们提出了一个无网格的物理信息图神经网络(PI-GNN)进行预测。定制的图形卷积层从历史数据中汇总了邻域信息,并具有将域专业知识集成到数据驱动模型中的灵活性。提出的方法放宽了对CRM等近距离解决方案的依赖性,并尊重给定的基于物理的约束。我们提出的方法是强大的,相对于传统的CRM和GNN基线而没有物理限制,性能和模型可解释性提高。
translated by 谷歌翻译
充电站在开发充电基础设施的区域中的放置是电动汽车未来成功(EV)的关键组成部分。在纽约的奥尔巴尼县,EV人口的预期增加需要额外的充电站,以在整个充电基础设施中保持足够的效率。鉴于预测的充电需求和当前的充电位置,增强学习(RL)的新型应用程序(RL)能够找到新的充电站的最佳位置。影响收费需求预测的最重要因素包括交通密度,EV登记和靠近某些类型的公共建筑。建议的RL框架可以完善并应用于世界各地的城市,以优化充电站的放置。
translated by 谷歌翻译
While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译
KL-regularized reinforcement learning from expert demonstrations has proved successful in improving the sample efficiency of deep reinforcement learning algorithms, allowing them to be applied to challenging physical real-world tasks. However, we show that KL-regularized reinforcement learning with behavioral reference policies derived from expert demonstrations can suffer from pathological training dynamics that can lead to slow, unstable, and suboptimal online learning. We show empirically that the pathology occurs for commonly chosen behavioral policy classes and demonstrate its impact on sample efficiency and online policy performance. Finally, we show that the pathology can be remedied by non-parametric behavioral reference policies and that this allows KL-regularized reinforcement learning to significantly outperform state-of-the-art approaches on a variety of challenging locomotion and dexterous hand manipulation tasks.
translated by 谷歌翻译
Wearable sensors for measuring head kinematics can be noisy due to imperfect interfaces with the body. Mouthguards are used to measure head kinematics during impacts in traumatic brain injury (TBI) studies, but deviations from reference kinematics can still occur due to potential looseness. In this study, deep learning is used to compensate for the imperfect interface and improve measurement accuracy. A set of one-dimensional convolutional neural network (1D-CNN) models was developed to denoise mouthguard kinematics measurements along three spatial axes of linear acceleration and angular velocity. The denoised kinematics had significantly reduced errors compared to reference kinematics, and reduced errors in brain injury criteria and tissue strain and strain rate calculated via finite element modeling. The 1D-CNN models were also tested on an on-field dataset of college football impacts and a post-mortem human subject dataset, with similar denoising effects observed. The models can be used to improve detection of head impacts and TBI risk evaluation, and potentially extended to other sensors measuring kinematics.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
The ability to create realistic, animatable and relightable head avatars from casual video sequences would open up wide ranging applications in communication and entertainment. Current methods either build on explicit 3D morphable meshes (3DMM) or exploit neural implicit representations. The former are limited by fixed topology, while the latter are non-trivial to deform and inefficient to render. Furthermore, existing approaches entangle lighting in the color estimation, thus they are limited in re-rendering the avatar in new environments. In contrast, we propose PointAvatar, a deformable point-based representation that disentangles the source color into intrinsic albedo and normal-dependent shading. We demonstrate that PointAvatar bridges the gap between existing mesh- and implicit representations, combining high-quality geometry and appearance with topological flexibility, ease of deformation and rendering efficiency. We show that our method is able to generate animatable 3D avatars using monocular videos from multiple sources including hand-held smartphones, laptop webcams and internet videos, achieving state-of-the-art quality in challenging cases where previous methods fail, e.g., thin hair strands, while being significantly more efficient in training than competing methods.
translated by 谷歌翻译
We develop a novel framework for single-scene video anomaly localization that allows for human-understandable reasons for the decisions the system makes. We first learn general representations of objects and their motions (using deep networks) and then use these representations to build a high-level, location-dependent model of any particular scene. This model can be used to detect anomalies in new videos of the same scene. Importantly, our approach is explainable - our high-level appearance and motion features can provide human-understandable reasons for why any part of a video is classified as normal or anomalous. We conduct experiments on standard video anomaly detection datasets (Street Scene, CUHK Avenue, ShanghaiTech and UCSD Ped1, Ped2) and show significant improvements over the previous state-of-the-art.
translated by 谷歌翻译
The combination of artist-curated scans, and deep implicit functions (IF), is enabling the creation of detailed, clothed, 3D humans from images. However, existing methods are far from perfect. IF-based methods recover free-form geometry but produce disembodied limbs or degenerate shapes for unseen poses or clothes. To increase robustness for these cases, existing work uses an explicit parametric body model to constrain surface reconstruction, but this limits the recovery of free-form surfaces such as loose clothing that deviates from the body. What we want is a method that combines the best properties of implicit and explicit methods. To this end, we make two key observations: (1) current networks are better at inferring detailed 2D maps than full-3D surfaces, and (2) a parametric model can be seen as a "canvas" for stitching together detailed surface patches. ECON infers high-fidelity 3D humans even in loose clothes and challenging poses, while having realistic faces and fingers. This goes beyond previous methods. Quantitative, evaluation of the CAPE and Renderpeople datasets shows that ECON is more accurate than the state of the art. Perceptual studies also show that ECON's perceived realism is better by a large margin. Code and models are available for research purposes at https://xiuyuliang.cn/econ
translated by 谷歌翻译